
光开关
词条创建时间:2022-06-16浏览次数:1049
光开关是光通信中作光路切换之用的,实现光通道的通断和转换,如主用和备用光纤之间的切换、光交换机中的光路切换等。
光开关简介
光开关是一种光路转换器件。在光纤传输系统,光开关用于多重监视器,LAN,多光源,探测器和保护以太网的转换。在光纤测试系统,用于光纤,光纤设备测试和网络测试,光纤传感多点监测系统。
光开关分类
光开关从制造工艺来分类
光开关从制造工艺来分类,可分成机械式,微光机电MEMS系统方式开关和其他方式开关。前两种光开关是目前最成熟,市场应用最多的产品,最后一类可细分为
液晶式光开关;–电光式光开关;–热光式光开关;–声光式光开关。
机械光开关具备:n
小的串音;n
大的消光比;
n低的插入损耗;
n小的驱动电压;
n无极化依赖性;
n与光纤有高的耦合效率;
n紧凑的器件尺寸
n开关速度和频率带宽可设定。
光开关按用途 来分类
机械光开关
机架式光开关
台式光开关
微机械式光开关
手持光开关仪表
光开关背景
光纤通信技术的问世和发展给通信业带来了革命性的变革,目前世界大约85%的通信业务经光纤传输,长途干线网和本地中继网也已广泛使用光纤。特别是近几年,以IP为主的 Internet业务呈现爆炸性增长,这种增长趋势不仅改变了IP网络层与底层传输网络的关系, 而且对整个网络的组网方式、节点设计、管理和控制提出了新的要求。一种智能化网络体系 结构——自动交换光网络(Automatic Switched Optical Networks,ASON)成为当今系统研究的热点,它的核心节点由光交叉连接(Optical Cross-connect,OXC)设备构成,通过OXC,可实现动态波长选路和对光网络灵活、有效地管理。OXC技术在日益复杂的DWDM网中是关键技术之一,而光开关作为切换光路的功能器件,则是OXC中的关键部分。光开关矩阵是OXC的核心部分,它可实现动态光路径管理、光网络的故障保护、波长动态分配等功能,对解决目前复杂网络中的波长争用,提高波长重用率,进行网络灵活配置均有重要的意义。随着光传送网向超高速、超大容量的方向发展#网络的生存能力、网络的保护倒换和恢复问题成为网络关键问题,而光开关在光层的保护倒换对业务的保护和恢复起到了更为重要的作用。
光开关应用场合
光纤环路、自动测量、光纤网络远程监控、光路切换、系统监测、实验室研发、动态配置分插复用、光路监控系统、光环路保护切换试验、光纤传感系统、光器件测试与研究。
光开关应用范围
光开关(Optical Switch,OS)是一种具有一个或多个可选择的传输窗口,可对光传输线路或集成光路中的光信号进行相互转换或逻辑操作的器件。光开关基本的形式是2X2即入端和出端各有两条光纤,可以完成两种连接状态,平行连接和交叉连接,如图2所示。较大型的空分光交换单元可由基本的2X2光开关以及相应的1X2光开关级联、组合构成。
图1 光开关的平行连接和交叉连接
光开关在光网络中起到十分重要的作用,在波分复用(Wavelength Division Multiplexing,WDM)传输系统中,光开关可用于波长适配、再生和时钟提取,在光时分复用(Optical Time Division Multiplex,OTDM)系统中,光开关可用于解复用;在全光交换系统中,光开关是光交叉连接(Optical Cross-connect,OXC)的关键器件,也是波长变换的重要器件。根据光开关的输入和输出端口数,可分为1×1、1×2、1×N、2×2、2×N、M×N等多种,它们在不同场合中有不同用途。其应用范围主要有:光网络的保护倒换系统,光纤测试中的光源控制、网络性能的实时监控系统、光器件的测试、构建OXC设备的交换核心,光插/分复用、光学测试、光传感系统等。
光开关微电子机械系统
近几年发展很快的是微电子机械光开关,它是半导体微细加工技术与微光学和微机械技术相结合,产生的一个新型微机-电-光一体化的的新型开关,是大容量交换光网络开关发展的主流方向。
MEMS(Micro Electro-Mechanical System)光开关是在硅晶上刻出若干微小的镜片,通过静电力或电磁力的作用,使可以活动的微镜产生升降、旋转或移动,从而改变输入光的传播方向以实现光路通断的功能。MEMS光开关较其他光开关具有明显优势:开关时间一般在ms数量级;使用了IC制造技术,体积小、集成度高;工作方式与光信号的格式、协议、波长、传输方向、偏振方向、调制方式均无关,可以处理任意波长的光信号;同时具备了机械式光开关的低插损、低串扰、低偏振敏感性、高消光比和波导开关的高开关速度、小体积、易于大规模集成的优点。
按功能实现方法,可将MEMS光开关分为光路遮挡型、移动光纤对接型和微镜反射型。 微镜反射型MEMS光开关方便集成和控制,易于组成光开关阵列,是MEMS光开关研究的重点,可分为二维MEMS光开关和三维MEMS光开关,并已提出一维MEMS光开关的概念。 所谓2D是指活动微镜和光纤位于同一平面上,且活动微镜在任一给定时刻要么处于开态,要么处于关态。在这种方式中,活动微镜阵列与N根输入光纤和M根输出光纤相连。对一个N×N光开关矩阵而言!所需的活动微镜数为N²。因此!这种方式也称为N²结构方案。